Worcester County Mathematics League
Varsity Meet 1 - October 27, 2021
Round 1 - Arithmetic

All answers must be in simplest exact form in the answer section.
NO CALCULATORS ALLOWED

1. Evaluate the expression below. Express your answer as an improper fraction $\frac{m}{n}$ in simplest terms.

2. Evaluate the expression below, expressing your answer as a decimal number.

$$
\frac{1.8 \cdot 2.7 \cdot(0.6+3.6)}{(1.8+2.7) \cdot 0.6 \cdot 3.6}
$$

3. Given the expression

$$
2-3 \cdot 4+5
$$

find all possible values of the expression that may result after placing one pair of parentheses, where the operations,$- \cdot$, and + are binary operations. Thus, the placement $2(-3 \cdot 4)+5$ is not allowed, while both $(2-3 \cdot 4+5)$ and $2-(3 \cdot 4)+5$ are possible placements.

ANSWERS

(1 pt) 1 . \qquad
(2 pts) 2. \qquad
(3 pts) 3.

Worcester County Mathematics League

Varsity Meet 1 - October 27, 2021
Round 2-Algebra I

All answers must be in simplest exact form in the answer section.
NO CALCULATORS ALLOWED

1. $a+b+c=42$, and a, b, and c are in proportion $1: 4: 7$. Find $3 a-4 b+c$.
2. A billboard measures 12 feet by $\frac{11}{3}$ feet. A border of uniform width is painted around the outer edges of the billboard. How wide is the border in feet if it covers one third of the area of the billboard?
3. How many different combinations of 100 bills of denominations $\$ 100, \$ 10$, and $\$ 1$ have a total value of $\$ 1000$?

ANSWERS

(1pt) 1. $3 a-4 b+c=$
(2 pts) 2. \qquad ft.
(3 pts) 3. \qquad

Worcester County Mathematics League

Varsity Meet 1 - October 27, 2021
Round 3 - Set Theory

All answers must be in simplest exact form in the answer section.
NO CALCULATORS ALLOWED

1. Given the Venn Diagram shown below for sets A, B, and C, find $(A \cup B) \cap(B \cup C)$.

2. Let the universal set U be the set of letters that appear in the words WORCESTER MATH LEAGUE, and let B be the set of four vowels (a, e, o, u). What is the number of subsets of B^{C} (the complement of $B)$?
3. There are 830 composite numbers less than 1000 . Let S be the set of composite numbers that are not divisible by 2,3 , or 7 . How many elements does S have?

ANSWERS

(1 pt) \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad

Worcester County Mathematics League

Varsity Meet 1 - October 27, 2021
Round 4 - Measurement

All answers must be in simplest exact form in the answer section.

NO CALCULATORS ALLOWED

1. If the minute hand on a clock is 6 inches long and the tip of the minute hand moves a distance of $x \pi$ inches in 35 minutes, find x .
2. The bases of a trapezoid are 9 cm and 15 cm and the altitude is 7 cm . Find the area of the quadrilateral formed by joining the midpoints of the adjacent sides of the trapezoid.
3. Find the volume of the solid object shown below: a right hexagonal prism of height 10 cm with a right cone of the same height cut from it. The base of the object is a regular hexagon with the inscribed circular base of the cone cut out, as shown to the right of the solid figure. The radius of the cone's base is 6 cm . The volume of the figure can be written in simplest form as $a \sqrt{b}+c \pi c m^{3}$. Find the ordered triple (a, b, c).

ANSWERS

(1 pt) 1 . \qquad
(2 pts) 2. \qquad cm^{2}
\qquad

Worcester County Mathematics League

Varsity Meet 1 - October 27, 2021
Round 5 - Polynomial Equations
All answers must be in simplest exact form in the answer section.

NO CALCULATORS ALLOWED

1. Polynomial $p(x)=x^{2}+b x+c$ has integer coefficients b and c. If the roots of $p(x)=0$ are $3+\sqrt{2}$ and $3-\sqrt{2}$, find the ordered pair (b, c).
2. Find all integer solutions to the following equation:

$$
|x+3+2 \sqrt{5}| \cdot|x+3-2 \sqrt{5}|=16
$$

3. Let the roots of $x^{2}+k x+12=0$ be r_{1} and r_{2} and let the roots of $x^{2}-k x+12=0$ be r_{3} and r_{4}. Find all possible values of k if

$$
f\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}-2 r_{1} r_{3}-2 r_{1} r_{4}-2 r_{2} r_{3}-2 r_{2} r_{4}+8\left(r_{1}+r_{2}-r_{3}-r_{4}\right)=0
$$

ANSWERS

(1 pt) 1 . \qquad
(2 pts) 2. $\{\square\}$
(3 pts) 3. $\quad k \in\{\square\}$

Worcester County Mathematics League

Varsity Meet 1 - October 27, 2021
Team Round

All answers must be in simplest exact form in the answer section.

NO CALCULATORS ALLOWED

1. Evaluate

$$
84 \div(12+6-3 \cdot 3-7+4)
$$

2. Solve the following system for x and y and express your answer as the ordered pair (x, y).

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{y}=5 \\
& \frac{2}{x}+\frac{3}{y}=13
\end{aligned}
$$

3. Babel High School requires each of its 650 students take a foreign language and no student is allowed to take more than two. It offers four foreign languages. If 125 students take German, 185 take Chinese, and 245 take Spanish and 90 students take exactly 2 languages, how many students take French, the fourth language?
4. A regular octagon has sides of length 4 cm . The area of the octagon can be expressed in simplest terms as $a+b \sqrt{c}$, where a and b are rational numbers and c is a positive integer. Find $a+b+c$.
5. Find all real solutions of the following equation:

$$
3 x-2 \sqrt{3 x}-8=0
$$

6. Let m and n be integers and x and y be three digit numbers such that $x=2^{m}$ and $y=5^{n}$ such that the second digit of x is the same as the first digit of y. Find the ordered pair (x, y).
7. The sum of two numbers is 12 . Their product is 32 . What is the sum of their reciprocals?
8. A spherical ball of radius 10 cm is placed on an open box. The dimensions of the open side of the box are 10 cm X 10 cm and the height of the box is 8 cm . The distance from the ball to the bottom of the box can be expressed in the form $a+b \sqrt{c}$. Find the ordered triple (a, b, c).
9. If $x-4$ divides $p(x)=x^{3}-k x+8$ with a remainder of zero, find k.

Assabet Valley, Shepherd Hill, Algonquin, Shrewsbury, Tantasqua, Burncoat, Bromfield, QSC, Westborough

Varsity Meet 1 - October 27, 2021
Team Round Answer Sheet

ANSWERS

1. \qquad
2. \qquad
3. \qquad
4. $a+b+c=$ \qquad
5. \qquad
6. (ـ)
7. $\{\longrightarrow\}$
8. (
9. \qquad

Worcester County Mathematics League

Varsity Meet 1 - October 27, 2021
Answer Key
Round 1 - Arithmetic
Round 5 - Polynomial Equations

1. $\frac{45}{8}$
2. 2.1
3. $\{-25,-15,-5,1\}$ (any order)

Round 2 - Algebra I

1. -21
2. $\frac{1}{2}$
3. 10

Round 3 - Set Theory

1. $\{$ Ava, Bob, Carl, Eve, Hope $\}$
2. 512
3. 120

Round 4 - Measurement

1. 7
2. 42
3. $(720,3,-120)$ (order matters)
4. $(-6,5)$ (order matters)
5. $\{-9,-5,-1,3\}$ (any order, need all four)
6. $\{-2,6\}$ (any order, need both)

Team Round

1. 14
2. $\left(\frac{1}{2}, \frac{1}{3}\right)$ (in this order)
3. 185
4. 66
5. $\frac{16}{3}$ (only real solution)
6. $(512,125)$ (order matters)
7. $\{4,8\}$ (either order)
8. $(-2,5,3)$ (order matters)
9. 18

Wocomal Varsity meet 1
Oct :27,2021
Solutions
Round 1-Arithmetic.

1. Apply the reciprocal rale $\left(\frac{1}{\frac{b}{a}}=\frac{a}{b}\right)$ multiple times to simplify the expression:

$$
\begin{aligned}
\frac{1}{\frac{\frac{2}{3}}{4}}-\frac{\frac{1}{\frac{2}{3}}}{4} & =\frac{4}{\frac{2}{3}}-\frac{\frac{3}{2}}{4}=\frac{3}{2}(4)-\frac{3}{2 \cdot 4}=6-\frac{3}{9} \\
& =\frac{48}{8}-\frac{3}{9}=\frac{45}{8}
\end{aligned}
$$

2.

$$
\begin{aligned}
\frac{1.8 \cdot 2.7 \cdot(0.6+3.6)}{(1.8+2.7) \cdot 0.6 \cdot 3.6} & =\frac{(18)(2.7)(4.2)}{(4.5)(0.6)(3.6)}=\frac{2.7(4.2)}{(4.5)(0.6) 2} \\
& =\frac{2.7(7)}{(4.5) 2}=\frac{(2.7) .7}{9}=0.3 .7=2.1
\end{aligned}
$$

The arithmetic is simpler if terms are cancelled from the numerator and denominator before multiplying the products, as demonstrated above.
nth expression
3. There are 3. binary operations and parentheses can be placed six different ways: one around all three operations, twice around two operations, and three ways around a single operation:

$$
\begin{array}{ll}
\text { operation: } & \begin{array}{ll}
(2-3 \cdot 4+5)=(2-12+5)=-5 & (2-3) \cdot 4+5=(-1) \cdot 4+5=-4+5=1 \\
(2-3 \cdot 4)+5=(2-12)+5=-5 & 2-(3 \cdot 4)+5=2-12+5=-5 \\
2-(3 \cdot 4+5)=2-(12+5)=-15 & 2-3 \cdot(4+5)=2-3(1)=2-27=-25
\end{array}
\end{array}
$$

Removing the repetitions of -5 , there are four values: $\{-25,-15,-5,1\}$

Wocomal Varsity Meet 1
Oct 27,2021
Round 2 Algebra I Solutions

1. Let the scale factor for $a: b i c$ be x, 50, that $a=x, b=-4 x$ and $c=7 x$. Then $a+b+c=x+4 x+7 x=12 x=42$ and $x=\frac{42}{12}=\frac{7}{2}$. Then

$$
3 a-4 b+c=3 x-4(4 x)+7 x=10 x-16 x=-6 x=-6(7 / 2)=-21
$$

2. The bill board is shown at the right with a uniform border of width x feet. Note that the area of the bill board is $12(11 / 3)=44 \mathrm{ft}^{2}$. It is easier ' $1 /{ }^{\prime}$ ' to calculate the area of the billboard
 that is inside the border, rather than the border area.
This area is $\left(\frac{11}{3}-2 x\right)(12-2 x)$ and is equal to two thirds of the Size of the billboard, or $\frac{2}{3}(44)=\frac{88}{3} \mathrm{ft}$. Setting these equal:

$$
\left(\frac{11}{3}-2 x\right)(12-2 x)=4 x^{2}-24 x-\frac{22}{3} x+44=\frac{88}{3}
$$

Multiply this equation by $3 / 2$ to convert to integer coefficients:

$$
\frac{3}{2}\left(4 x^{2}-24 x-\frac{22}{3} x+44=\frac{88}{3}\right)=6 x^{2}-36 x-11 x+66=44
$$

or.

$$
6 x^{2}-47 x+22=0
$$

This quadratic can be factored by grouping sind $6.22=3.44$ and $3+44=47,50$

$$
6 x^{2}-3 x-44 x+22=3 x(2 x-1)-22(2 x-1)=(3 x-22)(2 x-1)=0
$$

The two roots are $\frac{22}{3}$ and $\frac{1}{2} \cdot x=\frac{22}{3}$ results in negative dimensions and is extraneous. Thus, $x=1 / 2$

Wocomal Varsity meet 1
Round 2 Algebra I Solutions (cont.)
3. Let the number of $\$ 1, \$ 10$, and $\$ 100$ bills be a, b, and c, respectively. Then:

$$
\begin{aligned}
a+10 b+100 c & =1000 \\
a+b+c & =100
\end{aligned}
$$

Subtracting the second equation from the first gives:

$$
9 b+99 c=900 ; \text { or } b+11 c=100
$$

Now c must be less than 10 since b canst be negative. Once the value of c is selected, $b=100-11 c$, and $a=100-b-c$. Thus, there are 10 possible combinations of 100 bills of denominations $\$ 1, \$ 10$, and $\$ 100$ that have a total value of $\$ 1000$

Wocomal Varsity meet 1
Oct ,27,2021
Round 3 Set Theory Solutions

The set $(A \cup B) \cap(B \cup C)$ is found graphically above. The two unions $A \cup B$ and $B \cup C$ are shaded in the left and center Vern diagrams. The desired set is shaded in the right diagram; the ${ }_{n}$ area is the area common to the two union diagrams because it is their intersection. Thus, $(A \cup B) \cap(B \cup C)=\{$ Ava, Bob, Carl, Eve, Hope $\}$
2. $U=\left\{W_{i}, R, C, E, S, T, M, A, H, L, G, U\right\}$
B^{C} is the set of elements in U and not in $B: B^{C}=\{W, R, C, S, T, M, A, L, G\}$ There are 9 elements in B. The number of subsets of $B^{c}=2^{9}$, or 512.
3. Let $S_{1}=$ set of composite' n numbers divisible by 2 and less then 1000
$S_{2}=$ set of fore positimbers divisible by 3 and less than 1000
$\delta_{3}=$ set of ininusite biers divisible by 7 and less than 1000
$U=$ set of composite numbers less than 1000, where $|U|=830$
Now $S^{c}=$ Complement of $S=S_{1} \cup S_{2} \cup S_{3}$. We will find the count of S^{c} and subtract that number from $|U|=8_{3} 0$. Applying the principle of inclusionexcursion:

$$
\left|S^{c}\right|=\left|s_{1}\right|+\left|S_{2}\right|+\left|s_{3}\right|-\left|s_{1} \cap s_{2}\right|-\left|s_{2} \cap s_{3}\right|-\left|S_{1} \cap s_{3}\right|+\left|s_{1} \cap S_{2} \cap S_{3}\right|
$$

Wocomal Varsity Meet 1
Round 3 Set Theory Solutions (cont.)
Now: $\left|S_{1}\right|=\left\lfloor\frac{999}{2}\right\rfloor-1 \quad$ where $\lfloor\cdot\rfloor$ indicates "round down" to $=499-1=498$ the nearest integer, and 1 is subtracted $\left|S_{2}\right|=\left\lfloor\frac{999}{3}\right\rfloor-1=333-1=332$

$$
\left|S_{3}\right|=\left\lfloor\frac{999}{7}\right\rfloor-1=142-1=141
$$

$$
\left|S_{1} \cap S_{2}\right|=\left[\frac{999}{6}\right]=166
$$

because numbers divisible by both $\left|s_{2} \cap s_{3}\right|=\left\lfloor\frac{999}{21}\right\rfloor=47$ 2 and 3 are divisible by 6 and composite.

$$
\left|S_{1} \cap S_{3}\right|=\left\lfloor\frac{999}{14}\right\rfloor=71
$$

$$
\left|S_{1} \cap S_{2} \cap S_{3}\right|=\left\lfloor\frac{999}{42}\right\rfloor=23
$$

So

$$
\begin{aligned}
& \left|S^{c}\right|=\underbrace{498+332+14 \mid}_{971}-\underbrace{166-47-7 \mid}_{284+23}+23=994-284=710 \\
& |S|=|u|-\left|S^{c}\right|=830-710=120
\end{aligned}
$$

Wocomal Varsitymeèt 1
Solutions
Round 4 (measurement)

1. The tip of the minute hand traces an are of a circle of radius binches. The length of the arc is $\frac{35}{60}$ of the circumference of the circle, C, because it takes 60 minutes for the minute hand to trace the full circumference of the circle. For a circle, $C=2 \pi r$, where r is the radius of the circle. Thus:

$$
x \pi=\left(\frac{35}{60}\right) 2 \pi 6=\frac{35(2 \pi)}{10}=\frac{70 \pi}{60}=7 \pi
$$

And $x=7$
2. A trapezoid is drawn at right with the inscribed quadrilateral whose vertices are midpoints of the four sides. The median of the trapes zooid is parallel to the two bases and its length m is half the sum of the base lengths: $m=\frac{1}{2}(9+15)=12 \mathrm{~cm}$ The median splits the quadrilateral into two triangles with a shared base of length m. Each triangle's altitude to the shared base is half the height of the trapezoid because the median divides all transversal of the two parallel bases into congruent segments. Adding the areas of the triangles: $\frac{1}{2} m(h / 2)+\frac{1}{2} m h / 2=(m h) / 2=\frac{12.7}{2}=42 \mathrm{~cm}^{2}$ Note that we have shown that the area of the quadrilateral is exactly one half the area of the trapezoid.

Wocomal Varsity Meet I
Round 4 measurement solutions (cont.)
3. Let V_{p} be the volume of the prism and V_{c} be the volume of the cone.
Then the desired volume is $V_{p}-V_{c}$.
Let $B=$ area of the hexagonal bare of the prism.
and $h=$ height of the prism $=$ height of the cone $=10 \mathrm{~cm}$
$r=$ radius of the circular base of the cone $=6 \mathrm{~cm}$
The volume of a prism $V_{p}=B h$.
The volume of a cone $V_{c}=\frac{1}{3} \pi r^{2} h$
The area of the hexagonal prism base $B=\frac{1}{2} p a$
where $p=6 s=$ the perimeter of the hexagon
$S=$ length of one side of the regular hexagon
$a=$ apothem $=r$, the radius of the inscribed
 circle.
The side length is found using the $30-60-90$ triangle shown in the diagram:

$$
\frac{S}{2}=\frac{r}{\sqrt{3}}=\frac{6}{\sqrt{3}}=\frac{6 \sqrt{3}}{\sqrt{3} \sqrt{3}}=2 \sqrt{3} \text {, so } S=4 \sqrt{3} \text { and } p=24 \sqrt{3} \text {. then }
$$

$$
\begin{aligned}
& V_{p}=\left(\frac{1}{2} p d h=\frac{1}{2}(24 \sqrt{3})(6) 10=720 \sqrt{3} \mathrm{~cm}^{3}\right. \\
& V_{c}=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi 6^{2} 10=120 \pi \mathrm{~cm}^{3} \\
& V=V_{p}-V_{c}=720 \sqrt{3}-120 \pi \mathrm{~cm}^{3}=a \sqrt{b}+c \pi
\end{aligned}
$$

So $(a, b, c)=(720,3,-120)$ (order matters)
Note: B may also be found by noting that the diagonals of a regular hexagon split the hexagon in to six congruent equilateral triangles of height 6 m and side length $4 \sqrt{3} \mathrm{~cm}$, so

$$
B=6\left(\frac{1}{2} b h\right)=3(4 \sqrt{3}) 6=72 \sqrt{3} .
$$

Wocomal Varsity meet 1
Oct.27,20211
Round 5 Polynomial Equations Solutions

1. $p(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)$ in factored form, where r_{1} and r_{2} are the two roots of $p(x)=0$. Inserting the given roots and distributing:

$$
\begin{aligned}
(x-(3+\sqrt{2}))(x-(3-\sqrt{2})) & =x^{2}-x(3+\sqrt{2})-x(3-\sqrt{2})+(3+\sqrt{2})(3-\sqrt{2}) \\
& =x^{2}-3 x-3 x-x \sqrt{2}+x \sqrt{2}+3^{2}-(\sqrt{2})^{2} \\
& =x^{2}-6 x+9-4 \\
& =x^{2}-6 x+5
\end{aligned}
$$

and $(b, c)=(-6,5)$ (order matters)
Alternatively, b is the negative sum of the roots and c is the product. of the roots, as per Viete's formula.
2. Note that $|a| \cdot 16 \mid$ has two possible values: $(f+a)(+b)=(-a)(-b)=(a b$ and $(\dot{f} a)(-b)=(-a)(+b)=-a b$. Thus, the given absolute value equation is solved by finding all solutions ton tiro equations:

$$
\begin{aligned}
& (x+3+2 \sqrt{5})(x+3-2 \sqrt{5})=16 \\
& (x+3+2 \sqrt{5})(x+3-2 \sqrt{5})=-16
\end{aligned}
$$

Note that $(x+3+2 \sqrt{5})(x+3-2 \sqrt{5})=x^{2}+(3+2 \sqrt{5}+3-2 \sqrt{5}) x+(3+2 \sqrt{5})(3-2 \sqrt{5})$

$$
\begin{aligned}
& =x^{2}+(3+205+5-205) x+(5) \\
& =x^{2}+6 x+3^{2}-(2 \sqrt{5})^{2}=x^{2}+6 x+9-20=x^{2}+6 x-11
\end{aligned}
$$

Solving each of the tor o equations separately:

$$
\begin{array}{cc}
x^{2}+6 x-11=16 & x^{2}+6 x-11=-16 \\
x^{2}+6 x-27=0 & x^{2}+6 x+5=0 \\
(x+9)(x-3)=0 & (x+5)(x+1)=0 \\
x=-90 r 3 & x=-5 \text { or }-1
\end{array}
$$

and $x \in\{-9,-5,-1,3\}$ need all four, any order.

Wocomal Varsity Meet 1
Ocf.27,2021

Round 5 Polynomial Equations Solutions(cont.)
3. First, note that $r_{1}+r_{2}-r_{3}-r_{4}=\left(r_{1}+r_{2}\right)-\left(r_{3}+r_{4}\right)=-k-k=-2 k$ because the sum of the roots of $x^{2}+k x+12=015-k$ and the sum of the roots of $x^{2}-k x+12=0$ is k, due to Viete's formula. Also, $r_{1} r_{2}=r_{3} r_{4}=12$ from Viete's formula, which will be used later The solutions are found by expressing $f\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ as a function of $r_{1}+r_{2}-r_{3}-r_{4}=-2 k$, and noting that

$$
\begin{aligned}
\left(r_{1}+r_{2}-r_{3}-r_{4}\right)^{2} & =\quad\left(\left(r_{1}+r_{2}\right)-\left(r_{3}+r_{4}\right)\right)^{2} \\
& =\left(r_{1}+r_{2}\right)^{2}-2\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)+\left(r_{3}+r_{4}\right)^{2} \\
& =r_{1}^{2}+2 r_{1} r_{2}+r_{2}^{2}-2 r_{1} r_{3}-2 r_{1} r_{4}-2 r_{2} r_{3}-2 r_{2} r_{4}+r_{3}^{2}+2 r_{3} r_{4}+r_{4}^{2} \\
& =r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}-2 r_{1} r_{3}-2 r_{1} r_{4}-2 r_{2} r_{3}-2 r_{2} r_{4}+2 r_{1} r_{2}+2 r_{4}
\end{aligned}
$$

\cdots Note that $f\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ is equal to the expression for $\left(r_{1}+r_{2}-r_{3}-r_{4}\right)^{2}$ plus $8\left(r_{1}+r_{2}-r_{3}-r_{4}\right)-2 r_{1} r_{2}-2 r_{3} r_{4}$. Also, recall that $-2 r_{1} r_{2}-2 r_{3} r_{4}$ $=-2(12)-2(12)=-48$. Thus:

$$
\begin{aligned}
f\left(r_{1}, r_{2}, r_{3}, r_{4}\right) & =\left(r_{1}+r_{2}-r_{3}-r_{4}\right)^{2}+8\left(r_{1}+r_{2}-r_{3}-r_{4}\right)-2 r_{1} r_{2}-2 r_{3} r_{4} \\
& =(-2 k)^{2}+8(-2 k)-2(12)-2(12) \\
& =4 k^{2}-16 k-48=0
\end{aligned}
$$

Simplifying the polynomial and factoring:

$$
\begin{array}{r}
4 k^{2}-16 k-48=0 \\
k^{2}-4 k-12=0 \\
(k-6)(k+2)=0
\end{array}
$$

And $k \in\{-2,6\}$

Wocomal Varsity meet 1
Team Round Solutions

1. $\quad 84 \div(12+6-3 \cdot 3-7+4)=84 \div(12+6-9-7+4)=84 \div(18-76+4)=84 \div(2+4)$

$$
=84 \div 6=14
$$

2 Let $u=\frac{1}{x}$ and $v=\frac{1}{y}$, solve for u and v, then x and y :

$$
\begin{aligned}
& \left.\begin{array}{l}
u+v=5 \\
2 u+3 v=13
\end{array}\right\} \begin{array}{l}
2 u+3 v=13 \\
-2(u+v=5) \\
x=\frac{1}{u}=\frac{1}{2} ; y=\frac{1}{v}=\frac{1}{3} \Rightarrow(2 u+3 v=13 \\
\frac{-(2 u+2=10)}{v}
\end{array} \quad u=5-v=5-3=2 . \\
& (1 / 2,1 / 3)
\end{aligned}
$$

3. By the Principal of Inclusion-Exdusion:
$650=$ Total Number of Students $=125+185+245+x-90+0-0$ take German take tarkeorish
$x=\#$ students who take French

$$
=650-125-185-245+90=650-310-155=340-155=185
$$

4. The octagon area can be found by extending four of the side until they intersect and form a square. The area of the octagon is the area of the square minus the areas of the fou "corner" triangles
 Note that the corner triangles are 45-45-90 triangles because the interior angles of a regular octagon measure $\frac{(8-2) \cdot 180}{8}=\frac{1080}{8}=135^{\circ}$ and the exterior angles measure $180^{\circ}-135^{\circ}-45^{\circ}$,
One side of the square is $4+4 \sqrt{2}$ because the corner triangle sides are $2: \sqrt{2}, 2 \sqrt{2}$, and 4 , in proportion $1: 1: \sqrt{2}$. The corner triangles have area $\begin{aligned} \frac{1}{2}(2 \sqrt{2})^{2}=\frac{8}{2}=4 \text {. The square area }=(4+4 \sqrt{2})^{2} & =16+32+2(10 \sqrt{2}) \\ & =48+32 \sqrt{2}\end{aligned}$

$$
\begin{aligned}
A & =\text { octagon area }=A_{\text {spouse }}-4 A_{\text {corner }}=48+32 \sqrt{2}-4.4=48-16+32 \sqrt{2} \\
& =32+32 \sqrt{2} c_{m 2} \text { and } a+b+c=32+32+2=166
\end{aligned}
$$

Wocomal Varsity meet 1
Team Round Solution (cont.)
5. Let $z=\sqrt{3 x}$. Then $z^{2}=3 x$. Substituting in the given equation:

$$
z^{2}-2 z-8=0
$$

Factoring: $(z-4)(z+2)=0$ and $z=4$ or $z=-2$. The second solution is extraneous because $z=\sqrt{3 x} \geq 0$. Sg $z=4=\sqrt{3 x}$, on d $16=3 x$

So $x=16 / 3$ only $y^{\text {real }}$ solution
6. $x=2^{m}$. for $m \leq 6,2^{m} \leq 2^{6}=64$; for $m \geq 10,2^{m} \geq 1024$ Thus $m \in\{7,8,9\}$

$$
x=2^{2 m} \in\left\{2^{7}, 2^{8}, 2^{7}\right\}=\{128,256,512\}
$$

Like wise $y=5^{n}$ for $n<3,5^{n}<100$; for $n>4,5^{n}>1000$ $y=s^{n} \in\left\{5^{3}, 5^{4}\right\}=\{125,625\}$ Note that the first dig, of y is equal to 1 or $6 ; 1$ is the second dight of 512 , but no power of two with three digits has a second digit equal ti 6. Therefore $x=512, y=125$, or $(x, y)=(512,125)$
7. Let the two numbers be x and y. Then $x+y=12$ and $y=12-x$. Substituting for y in the product equation results in a quadratic:

$$
x y=32, \quad x(12-x)=32,12 x-x^{2}=32
$$

Rearrange and Factor the quadratic equation:

$$
x^{2}-12 x+32=0, \quad(x-4)(x-8)=0
$$

And $x=4$ or 8 (y is the other one. The answer is $\{4,8\}$ either.

Wocomal Varsity meet 1
Team Round Solutions (contr)
8.

ball on box

cross section

The ball sits symmetrically in. the box opening, as drown on the left. The plane of the open box to p intersects the ball in a circle that is inscribed in the box top square.

A cross section of the box and sphere is drawn on the right, where the cross section is created by the plane parallel to and halfway between the front and back of the box. Radii of 10 cm are down from the center of sphere to the edges of the box opening, where the cross sections of the sphere and the box are a circe of radius 10 cm and a $10 \mathrm{~cm} \times 8_{\mathrm{cm}}$ rectangle. Adashed line is drawn fromsphere center to the center of the box bottom. The desired distance from the ball to the box bottom is labeled x, and y is the distance that the ball extends. be low the plane of the box top. Then $x=8 \mathrm{~cm}-y$, and y is found from the right triangle shown at the left, which happens to be a $30-60-90$ triangle. Then

$$
10-y=5 \sqrt{3}, \quad y=10-5 \sqrt{3}, \quad x=8-y=8-(10-5 \sqrt{3})=5 \sqrt{3}-2
$$

or $x=-2+5 \sqrt{3}, 50(a, b, c)=(-2,5,3)$
9. Perform syn thetic division on $\frac{x^{3}-k x+8}{x-4} \rightarrow 4 \sqrt{10-k 8}$ set the remainder to 0 :

$$
\frac{41664-4 k}{1416-k / 72-4 k}
$$

